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1 Introduction

Let  be a bounded, simply connected domain in R? with a smooth boundary 9. Given two functions a and

b such that
Va € L?(Q) and Vb € L?(9),

then let ¢ be the unique solution in L?(2) to the Dirichlet problem

-A¢ =azb, —ayb, InQ
10} =0 on 99,

(1)

where () is parameterised by x and y, and subscript = and y denote the partial derivatives of a and b. The

Wente (1969) inequality states that there exists a constant Cy(2) such that

||¢HL<>°(Q) +||V¢||L2(Q) = CO(Q)HVGHL?(Q)||Vb||L2(Q) : (2)

In this paper, we examine the following generalisation of the Wente inequality on D2, where D? a disk of

radius 1 in R? centered at the origin,

18]l 1 () +IV 0l 2 02y < Colps DIVall o) I VBl o) (3)

with % + % =1, 1< p<oco. We find the best constant Cy(p, D?) in the following result.

Theorem - ¢ satisfies the generalised Wente inequalities:

181l oo (p2y < Coo(p: DQ)HVG‘”LP(DQ)||Vb||LQ(D2) and

(4)
|‘V¢HL2(D2) < Ca(p, D2)||Va||Lp(D2)HVbHLq(D2) )
for two optimal constants Cu (p, D?) and Co(p, D?) satisfying:
K K
Coo(p, D) = 52, Co(p,D*) =1/ 52
(p7 ) o 3 2(p7 ) o 5
where
_ psin(7/p)
Kp = m, 1< p < Q.
(Il

This is a significant result because (1) initially only tells us that A¢ is in L!, but this does not imply that
¢ € L*™ or that V¢ € L?. The “div-curl” structure of (1) with the presence of the negative sign introduces a
compensation phenomenon, allowing us to make the estimates in (2).
Baraket (1996) and Hélein (2002) found the optimal constant Cp(Q) = 5= + \/; , independently of the domain
Q). That is, Baraket found this constant for simply connected €2, and Hélein found this for any 2.
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2 Proof of results

Here we will prove the results stated in (4). First we find Cw(p, D?) and then we will find Ca(p, D?).

Theorem - Let ¢ be the solution to the Dirichlet problem

—A¢ = azb, —ayb, in D?

(5)
¢ =0 on 0D?.
Then it holds:
18]l e 02y < Coo (P DIVl ooty IV g
with
K psin(r/p)
2y _ p _
Coo(p,D?) = o where K, = 7(;0_ N’ 1<p<oo.
Proof
By Green’s Representation Theorem we have the following expression for ¢,
0E(x — 0
$(x0) = / pPPC X)) g )99 4 +/ E(x — x0)Addx, (6)
oD2 ov ov D2

for fixed xg € D?, E(x —x0) = 5=log|x — xo| and v is the exterior normal vector to D?. Choosing xo = 0 in
(6) gives us
»(0) = / E(x)Ad¢dx. (7)
By

Lemma - Performing a change of variables on (5) into polar coordinates gives
1
7A(,Z5 = ;(arbg - agbr), (8)

where 7 = /2% + y? and 6 = Arctan(¥).

Proof

We start out with (5) and use the chain rule,

agby — ayby = (a,r5 + apby)(brry + beby) — (arry + agby)(byry + beby)
= a,bor30y + agbyryl, — arbery0y — agbyr0,
= a;bg(rz0y — 1y0) — agbr (130, — ry6y)

= (arbg — agh,)(rz0y — r,0;). (9)
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Noting that

70 2 Ll —z
f 2 3
vy /3:2+y2 1 <%> x s

-2 2

—yx _

ryby = —L— % =y

Ve 1 (z)

and substituting into (9), the proof is complete.

O
Substituting (8) back into (7), we have
_1 1 2
¢»(0) = —/ / log |r|(arby — agb,) dodr
2 0 0
1 1 2m 1
= —/ / log |—|(a,bg — agb,.) dfdr.
2 0 0 T
Using the product rule,
1 1 27 1
0)=— log |—|((abg), — (ab.)g) dbdr.
60 =5 [ [ os| |ttt ~ (atrso) avar
Since ab,-(0) = ab,.(27),
1 1 27 1
= — log | —|(abg), dOdr,
00) = 5= [ [ 1087 tabo) apar
then using integration by parts,
1 1 1 27
0)=— = be dOdr. 10
00) = 5= [ 1 [ avodoir (10)
Now observe that
2m 2m 1 27
/ abedf :/ (a —a@)bpdf where a(r) = —/ a(r,o)do.
0 0 21 Jo
Hence,
2m 2m
/ abgdﬂ‘ = ‘/ (a — a)bgdﬂ‘
0 0
<l[la— a||Lp(o,27r) ||b9HLq(o,27r) ’ (11)
where the last inequality is true by Holder’s inequality.
By the Poincaré inequality, we have that
la = all o0 2m) 1061 La(0,27) < Kpllasll Lo o,2m) 1061l Lago,2m) » (12)
psin(r/p)

where K, = see Appendix A.

(= D1
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Now substituting (12) into (10), we have that

LT

K, dr
O <52 [ ool ol &
' (13)
ﬁ/
2

With another application of Holder’s inequality,

KP
wwg%<A

_ K
or

Notethat%’:p—landgzq—l, so we have

Ha9||LP |b9||Lq

Y

bolidd| \ @
|“’| ‘d) . (14)

(1
) (1

27 1 gy |P L Lop2m g4 3
< </ / —= rd&dr) (/ / — rd@dr) . (15)
27T 0 0 T
Now observe that
AL > 1 g2
(// — Td@dr) = // < rd@dr
0o Jo o Jo
1 p27 z »
< // <(19 +ar2> rdfdr
o Jo r
1 27 %
= (/ / |Va|prd0dr>
o Jo
Thus:
1 p2n P 5
ag P
(// % rd@dr) <IVall o) - (16)
0o Jo
Similarly,

qu

rdﬁdr)q < (Vb e - (17)

s

Substituting (16) and (17) back into (15) we have
Ky
[9(0)] < g”vanm(m)||Vb||Lq(D2)- (18)

This gives us the upper bound of ¢ at the center of the disk.
To find the upper bound for ¢ over the whole disk, we introduce the conformal transformation T : D? — D?
given by

zZ0+ 2

70 with fixed zp € D?. (19)

i
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T is a smooth map that maps the boundary of D? to itself, and T(0) = 2.
Let
a=aoT, b=boT, ¢=c¢oT.

Lemma - Equation (5) is conformally invariant under T, namely:

Proof
Let (u,v) = T(z,y).

~Ad(z,y) = ~A(u,0) = =¢(u, v)es — P, v)yy
= _(¢uum + ¢UUI)OE - (¢uuy + ¢vvy)y
= 7(¢)u1uz + ¢uufcm) - (¢vzvz + ¢)vvrz) - (¢uyuy + ¢uuyy) - (¢vyvy + ¢vvyy)~

Since T is a conformal transformation, then u and v satisfy the Cauchy-Riemann equations, (i.e. u, = v,

and u, = —v;), giving us,

7A$: 7(ux(¢u9c + ¢vy) + uy(¢uy - (bvx) + ¢u(umx + Uyy) + ¢v(vwc + vyy))a

Furthermore, since T is conformal, v and v are harmonic functions (ie. ugzy + tUyy = 0 and vy + vyy = 0),

SO

~A¢ = —(ua(Dua + buy) + ty(Suy — duz))
= —(Up(Puulls + PuvVs + Guvtly + upty) + Uy (Puuily + PuvVy — Guvlls — Pupvs))
= —(buutil + PooliaVy + Guuliy — GuvtlyVz)
= —(Puu + bvo) (U2 + u2)
= —Ap(ul +u2). (21)

Now evaluating the right hand side of (20),
dwgy - &yi)x = (ayug + ayvy) (bytty + byvy) — (ayty + ayvy) (bytiy + byvy)
= AyuUgby Uy + ApUebyly — Ay lyby Uy — ayUyby Uy

= (ayby — apby) (Uzvy — Uyvy)

= (auby — ayby)(u® + uz) (22)
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Combining (21) and (22) we see that

—AG(z,y) = dnby — dyby

2 2y _ 2 2
= —Ap(u,v)(uy +uy) = (auby — ayby)(uy + uy).
However u2 + u? > 0, and since T" # 0 then u2 + uZ > 0, thus we have

—Ad(u,v) = ayby, — ayby.

Using Green’s Representation Theorem on (20) , similarly as in (7), we get
. 1 1 1 2
0) =— - absdOdr. 23
60) = 5= [ 1 | abgaiar (23)

T induces a diffeomorphism of dD?. We paramaterize D? = T(9D?) by 8 € [0,2x]. There exists a constant

v := Arctan(7(1)) depending only on zy such that

2r 2wy
/ dbéd@ =/ abgde. (24)
0 vy
The Poincaré inequality is invariant under translation (mutatis mutandis Appendix A),
2wy
[ o] < Bl Wl 5)
¥
hence
2
‘/0 dbéda‘ = KP||G‘9HLP(O,271-)||b9||L‘1(0,27r) :
Hence, as in (18),
~ K,
[9(0)] < g”vaHLP(DQ)HVbI|LQ(D2)‘
Thus:
K,
9(z0)] < 52 1Val ooy I P8l ooy
As this holds for all zy in D? with the same constant K),, we find
Ky
H¢||Loo(D2) < ﬁ”va”Lp(Dz)HVb”LQ(D?)' (26)
Thus

K
Coo(p, D?) = oo

thereby completing the proof.
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Now we will prove the claim for the constant Ca(p, D?) in (4).

Theorem - Let ¢ be the solution to (5). Then we have:

||V¢||L2(D2) < Ca(p, D2)Hva||Lp(D2)||Vb||Lq(D2) )

with
[K psin(r/p)
2y [8p _
02(p7D ) - o’ and KP (p_l)l/p'
Proof
Let
V = (0:,0y), V*=(-0y,0.).
Then
Va - Vbt = azby — ayb,. (27)
By Hoélder’s inequality,
i
RN Y Py s (28)
where
1 1
-+-=1, 1<p<o.
p q

Now we find an upper bound for |[V¢|| ..

3

<
=
N
<
U
3
U
S

1 27 1 1
2 rdrdd + / ;qb%drd@. (29)
0

Let

2w 1 2 1 1
A= / / $*rdrdd and B = / / —p2drds.
0 0 0 o "’
First we simplify A. With an integration by parts, we get:

27 r=1 2 1 o 1
A= / ¢¢rr|  df — / / Prrrdrd — / / dp,drdf.
0 r=0 0 0 0 0

Then because ¢ = 0 on 0D?,

21 1 21 1
A= —/ / QP rdrdl —/ / oP,drdf.
o Jo o Jo
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Now we simplify B. Using integration by parts gives us

B/Oliqwe

Dy (r,0) = dg(r,2m) so we have:

0=2m

1 1 271'
dr — / — Ppoodldr.
o "Jo

0=0

1 1 2T
B = —/ - ¢¢99d9d7‘.
0 T

0

Substituting A and B back into (29) we get

2 1 1 1
||v¢||2L2(D2) = _/0 A Prrr + ;¢¢r + 72¢¢097"d7"d9
2m 1
= —/ / PpA¢rdrds. (30)
0 0

By (27) ,

27 1
IIVqﬁllsz(DZ)z/0 /()Wa-vwdrda,

and by Holder’s inequality,

21 1
/0 /O 6Va - Vb rdrdd <|[[6] || Va- Vbl‘ . (31)
By (26) and (28),
||V¢||2L2(D2) < ||¢||LOO(D2)||VG’||LP(D2)||Vb||LQ(D2)
< SVl oy IVBI 0 -
Hence,
Ky
||V¢||L2(D2) < \/;|Va“LP(D2)HVb”LEI(D2) : (32)
Therefore we see that
Cs(p, D?) = \/?, as claimed.
(]

3 Further work

Our results give the best constant for the disk but we do not know whether this is true for any €2, unlike
the standard Wente inequality [Topping (1997)]. Further, it is not clear whether the constant remains valid for

Q simply connected, unlike the standard Wente inequality [Baraket (1996)]. Inspecting our proof, we conjecture:
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Let ¢ be the unique solution to (1), where 0 is a graph over a circle, then it holds:

19l o) < Coolp, DIVall Lo () VOl La (e
||¢||L2(Q) < Ca(p, Q)Hva”LP(Q)HVbHLG(Q) )

where Cy(p, ) and Coo(p, Q) are as in (4).

This is because there exists a smooth, bijective, conformal map between all simply connected domains in C,
by the Riemann mapping theorem, taking the boundary of D? to the boundary of Q. Since D is mapped to
00 in a one-to-one fashion and all points on 92 can be parameterised along [0, 27] uniquely, this should not

affect our constant found in (4).
Appendix A Poincaré Inequality
The Poincaré inequality, in one dimension on (—1,1), is given by

a(z) - dw”Lv(—l,n = GPHaI(x)HLP(—l,l) ; (33)

where a, = %f_ll a(z)dz.

Stanoyevitch (1990) found, on the interval (—1, 1), the Poincaré constant G, to be

_ psin(w/p)
p = W7 1< p < o0.
We will show that on (0, 27)
la(y) - dy”m(o,zﬂ) < ﬂ-Gi”Ha/(y)HLl’(O,Qﬂ’) ’ (34)
where @, = 5-a(y)dy.
(35)
Proof
Let
dy
= 1 i
y=(@+m -
We have

2
) = 020y = |

1
-1
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Let A(z) = a(r(z + 1)) and A, = %f_ll A(u)du, then
dx

1 P
- f/ A(u)du
2./

— 4, Hip(—m) ’

1
la() = ay|[700.5m) = W/_l Ale)

7rHA(w)

By the Poincaré inequality,

ﬂ'HA(

I A

— A, HLP( 1,1) WG%HA/@)HZP(AJ)

=GP /_1 o/ (w(z +1))| da.

Now subsituting y in,

1 27
71'G’p/ |a (x+1)) |pdfop/
1 0

- Gty

da dy
dy dx

HLP 0,2m)

27
= Ggwp/o la’ (y)|Pdy.

Thus, as claimed,

la(y) - ay”m(ogn) < Gp”Ha/(y)HLp(ozw) :
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